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Biggest swell of the year arrived this morning. The beginners and intermediates went to a sheltered

" _ -|“ bay while the advanced group got the biggest waves of their life (see photos). Swell size was even

bigger this afternoon. How big? MASSIVE. Offshore winds, sunny.

Surfers in Indonesia: swells are normally delayed by a day with respect to the forecast
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Industry at North-Western shelf: swells are always
early with respect to the forecast
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%), MELBOURNE Swell arrival (relative to models)

* North West Australia: early
* Indonesia: very late
- Hawaii: on time? 1 e
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' Definitions

* Long-crested (uni-directional)
* Disconnected from local wind
- outrunning the win
- perpendicular to the wind
- against the wind




THE UNIVERSITY OF Wind-forced swell

MELBOURNE outrunning the wind

_ Long fetches
. wa|  Slowing winds
Arctic Ocean
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Figure 3. Scaling of waves in the Arctic Ocean, using nondimensional
wave energy versus nondimensional fet¢h. There are 1880 points (each
corresponding to an hourly observation from the in situ mooring at
75°N, 150°W). Symbols as in Figure 2. The dashed line is a regression Wave height [m)]

with a Iogarithmic slope of 1.6. The Pierson-Moskowitz limit for pure Figure 1. Example wave model hindcast during September 2012 storm.

wind seas is shown at £ = 3.64 x 1 0—3. The map is centered on the North Pole, and the mooring location is
indicated by the black circle north of Alaska. The color scale indicates
significant wave height from 0 to 5 m.

Thomson & Rogers, JPO, 2014



YOUNG: HURRICANE DIRECTIONAL SPECTRA

Wind-forced swell

@ 90 and 180 degrees
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SU®). MELBOURNE Model performance

DE,

Wind waves / swells
Wave height
« Well predicted (<10% globally)/
/ poor (factor of 2 is not uncommon)
Wave period (arrival time)

* Reasonable (metrics is uncertain)/ very poor
(large under- and over-predictions)

Direction

* Depends on situation (eg. presence of
currents) / unknown
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Swell Height
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. MELBOURNE Swell attenuation

Attenuation and dissipation are not the same

dispersion/spreading

energy Is conserved (spread forward/obliquely)
dissipation/exchange with air-water

energy is lost from the wave system

lateral energy diffraction

energy IS conserved (spreads laterally)

Interaction with local winds/waves can lead to swell
growth

- energy Is gained by swell
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Dispersion/ Spreading
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« Attenuation along the
great circles

« Point source (> 4000
km)

« Can be evaluated
analytically

« Complicated closer to

the storm

dE.
E d;,' :]fd +Ias

A

wc=1/(aR)=-1/x
I = —cot(a)/R = —cor(x/R)/R

Collard et al., JGR, 2009
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Figure 8. (a) Location of SAR observations with a 15 s
peak period swell system corresponding to the 12 February
source, with outgoing directions of 74 to 90°. The same
swell was also observed at all buoys from 46075 off western
Alaska to 51001 in Hawaii. The dash-dotted line represents
great circles leaving the storm source with directions 42, 59,
74, 90 and 106°. (b) Observed swell wave height as a
function of distance. The solid lines represent theoretical
decays using no dissipation (blue) or the fitted linear
dissipation (green) for swells observed in February 2007.
Outlined dots are the observations used in the fitting
procedure. Error bars show one standard deviation of the
expected error on each SAR measurement.



Dissipation
wave-induced turbulence
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Swell dissipation
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Interaction with Adverse Wind/
negative input




Wind-Induced Growth of Waves 191
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Figure 4. The magnitude of the fractional energy change per radian x the density ra-
tio, (a) growth rates for the wind-sea, and (b) attenuation rates for the paddle-generated

waves travelling against the wind. The regression lines to the data are shown and the
corresponding sheltering coefficients (line slopes) are indicated on the figure - Donelan, ECMWE, 1999
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8. MELBOURNE Attenuation summary

AUy

 Three attenuation mechanisms were
discussed:

- dispersion/ spreading
- Interaction with turbulence in the water

- energy/momentum exchange with
adverse wind




Diffraction (lateral spread of wave energy)
following Babanin & Waseda, OMAE, 2015




Chabchoub et al.,

10 20 30 40
distance from wavemaker, m

crests 10m (blue), 5m (green), 5m/5m with 180-

degree phase shift (red)

no diffraction if each half-tank has the waves
visually, coherent wave trains do not mix

Babanin & Waseda, OMAE, 2015



Interaction of Swell with Background
Waves and Winds
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MELBOURNE
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When the swells enter storm area, will be NO
diffraction

In Ardhuin et al. (2009), Collard et al. (2009)
swells can be growing

possible reasons:
forcing by concurrent wind

nonlinear interactions with background wind-
generated waves
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U8, MELBOURNE CONCLUSIONS

£

« Swell Is a difficult problem

 Attenuation: dispersion, dissipation, diffraction
— all important

« Can (perhaps) grow due to reconnection with
local winds or waves

 Arrival: can decelerate or accelerate — variety
of possible physical mechanisms, as well as
numerical reasons

« Experiments (high-resolution satellite
observations) of swell propagation are needed

—+ Problem needs a dedicated effort
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Observations have become available

Wave-forecast models have large biases in regions
dominated by swells, such as tropical areas

This Is because physics of spectral models is based
on the physics of wind-generated waves:

dF (W, k,q, x,t) _¢ 49

d , input nonlinear dissipation

Swell physics, however, is absolutely different from
the wind-wave physics

The only relevant term Is the energy sink, and this

sink 1s not due to wave breaking
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Swell Arrival
can arrive on time, be late or be early
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MELBOURNE Linear propagation

AUy

 Final resolution of peak frequency
- would explain the scatter

 Different decay rate of different frequencies
- would explain early arrival

* Note that swells can be propagating for days

E(S)

(m?/Hz)

.I: Figure 3. he interpretation of the variance density spectr
of the total variance of the sea-surface elevation over frequencies

Young, Elsevier, 1999 Holthuijsen, CUP, 2007
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Refraction Nonlinear effects

* Currents/ large-scale « Modulational instability
eddies can extend the causes downshifting
fetch (Raman effect)

« Can extend the time of « Adverse currents with
swell to go through horizontal gradients
shallow areas cause downshifting (e.g.

« Swell will decellerate Babanin et al.,

Hindcast/Forecast,

eeeeeeeeeeeeeeeee

ﬁ . 2011)
Swell will accelerate

Interaction with
wind/waves can affect




== The Experiment

L B | initial steepness ak = 0.15, long trains
e 5| T T T T T

80
» j it G s ﬂl | 1 Ii\ S——
60— ltlHl 0 \h NR—.
g LU 1' \'l b
o 50— mmmj (KR :lllmlll ‘ s
Hnlmunnummmmm‘lk [lsanias sesmpran
B 40 | S e e
€ " t\]l ,‘; ;n‘u J"1 M s
g 30— {HHM] |‘| [H L (Ve —
57 S| OO . J\ I\Jlll [l p ;lm, -,
Q" o ’| i lfllltllhhhhhllf A7 ——
tofrrrtaal M‘W i) hhh}“ ” '...M., et
NSRS | Mlh n i '\’\‘\'%'5'5‘5““' -
&
% 2000 4000 6000 sooo 10000 12c|>oo 14000

time scale

Ocean Engineering Basin, University of Tokyo

* 50m x 10m x 5m

 Wavemaker: 32 programmable plungers

« 1D wave array of 8 probes (2.3m from the wall)
« Directional wave array in the centre

« Single wave groups or wave trains (40 groups)

Babanin & Waseda, OMAE, 2015



\ Nonlinear diffraction of short-crested
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waves

v » exc, v :14.392'60g +0.08
 Such diffraction is too fast for the ocean

« 100 m wave/crest length swell, with 0.01
steepness would double its crest length within
10 to 19 minutes

* This Is unrealistic
* The dynamics must be more complicated

* Question of the lateral diffraction of swell
remains open

 If wave energy already present in the areas,
there will be no diffraction

Babanin & Waseda, OMAE, 2015
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)« MELBOURNE Swell attenuation

Attenuation and dissipation are not the same

- frequency dispersion

- directional spreading

- viscous dissipation (negligible)

- Interaction with air turbulence (Ardhuin et al. 2009)

- Interaction with water turbulence (Babanin 2006, 2011)
- Interaction with adverse wind (Donelan 1999)

- nonlinear interactions with currents (hypothetical)

- lateral energy diffraction (Babanin & Waseda, 2015)

Interaction with local winds/waves can potentially lead to
swell growth
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